After messing around with this interdigital filter I never could get a nice smooth response. At best there is “step” in the response as the frequency goes above the center frequency of the pass band. For this application that would not be a problem as I am just removing other harmonics of the main oscillator. Using FR4 board is not the best for UHF and above filters. The loss is just too high. Also the dielectric constant is not very constant. Now that I have this filter built I measured the final microstrip elements.
P (total length of each microstrip, there are four) = 2062.5 mils
P2 (tap for the input and output from ground end) = 203 mils
W (width of each microstrip, they are all the same) = 164 mils
S1 (spacing between element 1 and 2) = 391 mils
S2 (spacing between element 2 and 3) = 172 mils
S3 (spacing between element 3 and 4) = 500 mils
Measuring the actual center of the band pass on the tracking generator indicates 737.68 MHz. Now we can modify the simulation with our actual measured values and keep changing the dielectric constant until the frequency matches the measured. Nominally FR4 is around 4.5. The simulation shows:
For 4.7 Fo = 743.53 MHz
For 4.8 Fo = 736.39 MHz
For 4.9 Fo = 728.57 MHz
For 4.79 Fo = 737.68 MHz
Setting the simulation to 4.79 yields our measured frequency of 737.68. We will use this value for future filters around this frequency. I want to try a hairpin filter next. I have the initial design. Other than the narrow spacing and I assume more critical layout tolerances the pass band does not contain the “step”. Hairpins do respond to the even harmonics of the first pass band. I don’t think that will be a problem the higher harmonics of the multiplier will be reduced by the design of the multiplier.
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment